
Journal of  Statistical Physics, VoL 21, No. 6, 1979 

Correlation Inequalities for Vector Spin Models 

James L. Monroe 1 and Paul A. Pearce 2,3 

Received May 27, 1979; revised May 31, 1979 

Correlation inequalities for n-vector spin models (n /> 2) are reviewed. A 
relatively simple and unified derivation of the inequalities is achieved, using 
duplicate variable methods, for spin dimensionalities n = 2 (plane rotator 
model), n = 3 (classical Heisenberg model), and n = 4. Although cor- 
relation inequalities are lacking for n > 4, new proofs are presented for 
the comparison inequalities relating correlations for systems with arbi- 
trary spin dimensionality to corresponding correlations for systems with 
low spin dimensionality (n = 1 or 2). 
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1. I N T R O D U C T I O N  

Griffiths (1) first introduced correlation inequalities for spin-.} Ising ferro- 
magnets in 1967. Today  these remarkable inequalities represent an enormously  
useful and powerful tool  in the study of  a variety o f  magnetic lattice spin 
models. Thus considerable interest centers, first, on finding further inequali- 
ties, and second, on extending the inequalities to the largest possible class 
o f  models. The search for new inequalities has proved particularly fruitful 
for the scalar (n = 1) Ising systems, and recently Sylvester has written an 
excellent review ~2~ on correlat ion inequalities for general continuous-spin 
Ising models. Al though many  inequalities are now known for other systems, 
no comparable  review exists describing the recent advances in this area. 
Our  aim here is to partly fill this gap by reviewing the current status o f  
correlat ion inequalities for vector spin systems. 

Over the past  few years the duplicate variable method has emerged as 
the most  impor tant  technique for proving correlation inequalities. In  this 
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paper we discard many of the original proofs and develop proofs based on 
duplicate variables. We believe an overall unification and simplification is 
achieved in this area of statistical mechanics by using the duplicate variable 
method and we feel that this paper, along with Sylvester's, confirms this 
belief. 

In the remainder of  this introduction we indicate the layout of the 
paper. For interest we intersperse some remarks of a historical nature. Since 
we do not review the many possible applications of the various correlation 
inequalities, the reader interested in these matters is referred to the original 
articles. 

In Section 2 we introduce our notation and prove two peripheral lem- 
mas. We also prove a simple inequality, expressing the nonnegativity of 
correlations, which holds for arbitrary ferromagnetic n-vector spin systems. 
For n = 1 this inequality is just the first Griffiths-Kelly-Sherman in- 
equality ~l'a~ for the Ising model. 

Inequalities for systems with two-dimensional (plane rotator) spins are 
treated in Section 3. The main results are obtained as corollaries to Theorems 
3.2 and 3.7. The component-wise correlation inequalities (Corollary 3.4) 
were obtained for pair interactions by Monroe ~4~ and extended to many- 
body interactions by Kunz e t  aI. <5~ and Dunlop/6) The Gaussian inequalities 
(Corollary 3.5) analogous to Newman's inequalities (7~ for the Ising model 
have been proved by Bricmont. (8~ The vector-coupling inequalities (Theorem 
3.7, Corollaries 3.8 and 3.9) are essentially due to Ginibre/9~ The inequalities 
of Corollaries 3.3 and 3.8 were obtained by Messager e t a / .  (1~ and used to 
obtain results on the uniqueness of the equilibrium state for the plane 
rotator model (see also Bricmont e t  al.(~>). The special form and applica- 
tion of these inequalities were inspired by the work of Lebowitz (~2~ on Ising 
models. The final results (Theorem 3.10 and Corollary 3.11) of Section 3 
are new and give some information on the decay of the plane rotator cor- 
relation functions. The form of these inequalities was suggested by the 
Ising model inequalities of Schrader, (13> Messager and Miracle-Sole, (14~ and 
Hegerfeldt. (1~ 

Section 4 contains inequalities for systems with higher dimensional 
spins. The main results for n = 3 and n = 4 (Corollaries 4.2, 4.3, 4.5, and 
4.6) are due to Kunz e t  al .  ~5~ and Dunlop/6~ Theorems 4.8 and 4.9 offer a 
restatement and new proof  of the comparison inequalities of Thompson, (~m 
Bricmont, (17~ and Kunz e t  al. (5~ 

In Section 5 we conclude with a discussion of some open problems. 
Finally, for completeness we mention that a number of correlation 

inequalities are known to hold (8'18~ for discrete rotators. Although we have 
not written out any inequalities for such models explicitly, analogs of many 
of our results are in fact easily obtained for discrete rotators as consequences 
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of  our main theorems. The methods presented here can also be used to 
obtain inequalities for lattice models in quantum field theory. Although 
not included in this review, many of these inequalities can be found in the 
references cited. 

2. N O T A T I O N  A N D  P R E L I M I N A R Y  RESULTS 

Let A be a finite set of sites. To each site i e A associate an n-dimen- 
sional vector (classical spin) S~ = (S~ 1, S~2 , . . . ,  Si ~) e ~ of some fixed 
length, let us say unit length. These spins are then naturally parametrized 
by the points of the unit sphere S ~ in [R ~, and the configuration space for the 
system is {S} = | SL A duplicate system is formed by associating an 
additional unit vector (spin) g~ c [R 7~ to each site i c A. The configuration 
space for the doubled system is then {S, S} = @/~A ( S n  @ s n )  �9 

To discuss the various Hamiltonians it is convenient to introduce the 
set 

~t' = 77 A = {M: A - + Z }  (2.1) 

of all multiplicity functions on A, and the subset 

~ +  = { A e d [ :  A( i )  > 1 0 f o r a l l i e A }  (2.2) 

of all nonnegative multiplicity functions on A. For clarity, we use M, N, 
etc., in the sequel to denote arbitrary elements of J / ,  and A, B, C, D, etc. 
to denote elements o f J / l  +. Given A e ~//g+ and a variable x taking the values 
x~ for i e A, we set 

xA = ~ x A") (2.3) 
i ~A  

In this notation the most general Hamiltonian for a vector spin model is 

H(S) = - ~ JAB...aSA1Ss 2 ... S O  (2.4) 
A, B,...Ge~[ + 

This represents the energy of the system in the configuration S. If the inter- 
action parameters JA~...C are such that the energy assignments favor parallel 
alignment of the spins, then the Hamiltonian (2.4) is called ferromagnetic. 
The usual pair-interaction Hamiltonian is 

H(S)  = - ~.  J , , S ~ . S , -  ~ h~S, ~ (2.5) 
i,jEA i~A 

where, according to convention, we use h~ for the single-site (magnetic field) 
parameters. This Hamiltonian is ferromagnetic if all the parameters J~j and 
h~ are nonnegative. The special cases n = 1, 2, and 3 of Eqs. (2.4) and (2.5) 
refer to the Ising, plane rotator, and classical Heisenberg models, respectively. 
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The expectation value, i.e., the usual thermal average, of a function 
f(S)  on {S} is defined by 

(f>" = f s , f e - n  dSt,{s} / f e-H dS (2.6) 

where dS = I]~A dS, indicates an integration over configurations. We extend 
this definition to the doubled system, described by the Hamiltonian J/F(S, g), 
by setting 

<f>~ = f fe -ae dS d S / (  e -ae dS dS (2.7) 
J{ s,~} 'd,t, {s,~} 

for any function f(S,  S) on {S, S}. Clearly, this agrees with the previous 
definition for functions f(S) when the duplicate systems are independent, 
that is, when the doubled Hamiltonian is of the form 

d4,:(S, S) = H(S) + H(S) (2.8) 

Note that, since the inverse temperature/3 = 1/kT plays no significant role, 
we have set it equal to unity. 

T h e o r e m  2.1. Suppose the Hamiltonian for a vector spin system can 
be written in the form (2.4) with all the parameters JA>..a >10. Then 

<SalSB 2 ... Sa~>~ >/ 0 (2.9) 

for all A, B,..., G e d{ + . 

Proof. Since the partition function in (2.6) is nonnegative, we only need 
to show 

f{ SAISB 2 "" Sa m exp[-H(S)]  dS >/ 0 (2.10) 
s} 

By expanding the exponential and integrating term by term, our task reduces 
to proving the inequality 

s, (&~),(&2)q ... (&,), dS~ >f 0 (2.11) 

for all nonnegative integers p, q,..., t. But now the integral (2.11) vanishes 
by symmetry (&~ --+ - &t etc.) unless p, q,..., t are all even, in which case 
the integral is trivially nonnegative. 

The correlation inequality (2.9) is an inequality of the first kind. To 
obtain inequalities of the second kind we use duplicate variables. To obtain 
these inequalities for higher dimensional spins we decompose the spins into 
coupled two-dimensional spins. Because two-dimensional spins enter in this 
special role we denote them by r ~, % u etc. The subscript 2 in (2.6) and 
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(2.7) labeling expectations of  functions of  such variables is then redundant 
and will henceforth be dropped. 

To deal with two-dimensional spins it is convenient to introduce a num- 
ber of auxiliary variables. Given i ~ A we define variables 

O~ i = O'i 1 ~ ~il~ ~ = Gi I -- ~i I 

(2.12) 
T i  "~- ~i 2 -{- O'i 2 ,  ~ i  = ~ i  2 - -  O'f 2 

It  is also useful to introduce angular variables. Using the parametrization 

@ = cos $~, or, 2 = sin St (2.13) 

with 0 ~< ~ < 2rr for i E A, we find 

a~-aj = cos(q~ - ~j) (2.14) 

This motivates consideration of functions generated by the variables 
cos(M, q~) with M ~ dg and 

M.q~ = ~ M(i)6,  (2.15) 
i~A 

A polynomial in the variables x,, i ~ A, is a sum ~ A ~ *  aAXa of mono- 
mials (2.3) with only a finite number of  the coefficients a a # O. The set P 
of  all such polynomials with nonnegative coefficients (a A >/ 0)  is a multi- 
plicative positive cone, i.e., a convex cone closed under multiplication. In 
particular, af, f + g, fg  c P whenever f ,  g ~ P and a ~> 0. We say that the 
cone P is generated by the variables x~, iE A. Given cones P and Q, we 
define P + Q = { f +  g : f ~ P , g ~  Q} and PQ = {~,~=if~g~:f~eP, gs~ Q; 
n = 1, 2, 3,...}. For ease of  reference we list various cones and their genera- 
tors in Table I. These cones will be used in the sequel without further specifi- 
cation. Special Roman letters denote cones generated by variables defined 
on doubled systems. 

Table I 

Cone Genera tors  

P1 ~1; i ~ A  
Pz a~ 2 ; i ~ A 
P l ~z~, fli; i ~ A 
P2 y~, 3 ~ ; f ~ A  
P = P I P 2  cq, fl~, ~ ,  3~; i ~  A 
Q cos (M.  ~); M ~ 
Q cos (M.  ~) _+ cos (M.  ~); M ~ r  
Qz c o s ( M . ~ O  _4_- c o s ( M . d ' ) ;  M E .A' 
Q2 c o s ( M ' ~  2) + cos(M-~2) ;  M ~ Jr '  
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We conclude this section with two peripheral  results that  we will need 
in later sections. 

where 

L e m m a  2.2.  Let x and y be variables defined on A. Then  if A e ~ ' + ,  

XA +-- YA = 2 - 1 A 1 + 1  
A! 

~ .  ( x  - y )B(x  + Y)c B! C! (2.16) 
B+C=A 

I B leven(odd) 

[AI = ~ IA(i)], At --- ] - I  A( i ) !  (2.17) 
ieA i e A  

and the sum of  B and C in Jr is given by 

(B  + C) ( i )  = B( i )  + C( i )  (2.18) 
In part icular,  

x~xs + y~ys = �89 + yO(xs + yy) + (x~ - y~)(xs - ys)] (2.19) 
= �89 + x , ) ( y j  + x 3  + (y~ - x 3 ( y j  - xj)] 

xixs - y~yj = �89 + y~)(xj - ys) + (xi - y~)(xs + ys)] (2.20) 

Proof .  Write x~ = �89 + y~) + (x~ - y~)], y~ = �89 + y~) - (x~ - Y0] 
for  each i c A and expand the lef t-hand side of  (2.16). 

k e m m a  2.3.  Let  

HCa) = - _~+ (JAlaA 1 + JA2aa 2) (2.21) 
AeJr 

Then,  using the parametr iza t ion  (2.13), - H ~ Q if ]JA 2] <<. JA 1 for all A e d/ '+ 
and  JA 2 = 0 for  [A[ odd. 

Proof .  Write 

JAI~A ~ + JA2~A 2 = (JA ~ -- IJA2])~A 1 + [JA2I((rA ~ +__ ~A 2) (2.22) 

The  first term is trivially an element of  Q. The  second te rm vanishes unless 
]A I is even. In this case it can be brought  into the required form using L e m m a  
2.2 and  the identity 

cos r cos ,75s _+ sin r sin Cs = cos(r -Y- Cs) (2.23) 

3. I N E Q U A L I T I E S  F O R  T W O - D I M E N S I O N A L  S P I N S  

In this section we derive various correlat ion inequalities for  systems 
with two-dimensional  spins. We begin by duplicating the spin variables;  this 
reduces the problem to proving an inequality of  lower order for the doubled 
system. The  fundamenta l  results are most  easily stated in terms of  the 
auxiliary variables introduced in the previous section. 
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Lemma 3.1. Let d/~(a, ~) be any measure on {~, ~} and consider the 
3]A ] symmetries (i) ~ - - ~ ,  (ii) @ - - ~ - @ ,  ~ 1 - - ~ - ~ ,  (iii) ~2_> _a2 ,  
~2 _+ _ ~2; i ~ A. Then the inequality 

f ~,,~ o*AfiBTc8 D dtx(~, ~) >1 0 (3.1) 

holds for all A, B, C, D e J t  '+ in the following three cases: 

1. d/x(t~, ~) is invariant under the symmetries (i)-(iii). 
2. d/x(~, ~) is invariant under the symmetries (i) and (ii) and d/~(a, ~) = 0 

unless ~2, ~2 /> 0 for all i e A. 
3. d~(,, ~) is invariant under the symmetries (i) and d~(*, ~ ) =  0 

unless @, a~ ~, a2, ~2 /> 0 for all i e A. 

ProoL We prove the result for case 1. In this case, by the assumed 
symmetries (i)-(iii), the integral (3.1) vanishes unless the four multiplicities 
A(i), B(i), C(i), and D(i) all have the same parity at each site i ~ A. If  the 
parity is even at a particular site, that site clearly contributes a nonnegative 
factor to the integrand. On the other hand, if the parity is odd at the site in 
question, it is reduced to even parity by factoring off the single nonnegative 
term 

cq/?,7,8 ' = [(@)z _ (6~)s]z (3.2) 

So again the site contributes a nonnegative factor to the integrand. This 
establishes (3.1) for case 1. It is established in the other cases, which we will 
need in the next section, by similar arguments. 

T h e o r e m  3.2. Suppose the Hamiltonian for a duplicated system can 
be written in the form 

~r ~) = - ~,~.c~.~/, + JA~C~c~Afl~TC~O (3.3) 

with all the coefficients JA~CV >f O, i.e., - - ~  ~ P. Then if G(6, ~) is a non- 
negative function invariant under the 3]A] symmetries of Lemma 3.1, the 
inequality 

<fG> >. 0 (3.4) 
holds for all f e  P. 

ProoL It clearly suffices to consider the case w h e n f i s  a monomial. We 
want to show 

aA/3~,/C~3D exp[--,Y{'(a, ~)1 d/~(g, ~) /> 0 (3.5) 
o,&} 

where 

d.( , . ,  = a( , . ,  1--[ a,., (3.6) 
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But now, from (3.3), the exponential can be expanded as a series of mono- 
mials in the %/3, 9', and 3 variables with nonnegative coefficients. Thus the 
result follows by term-by-term integration, using Lemma 3.1, because the 
measure (3.6) is invariant under the required symmetries. 

C o r o l l a r y  3.3 ,  Let 

H(a)  = - A ~  + (Ja~crA ~ + Ja2~a 2) (3.7) 

H(-6) = --A~e+ (Ya~a ~ + Ja2~a 2) (3.8) 

be Hamiltonians for two independent systems defined on A. I f  JA ~ >1 ]JAil 
and Ya 2 1> [JA2[ for all A E J{+,  then 

<erA1> - <~a~> /> [<~raloB~><~B~> - <~a~s~><%~>l (3.9) 

<~a2> - (era2> /> [<crA2%2>(~B2 > -- <~A2~B2)(aZ2>I (3.10) 

for any A, B z J [+ .  The expectations can be taken in the appropriate indi- 
vidual system, that is (3.7) or (3.8), or equivalently in the doubled system 

.Of(a, ~) = H(r + H(6--) (3.11) 

ProoL The proofs of the inequalities (3.9) and (3.10) are similar. To 
obtain (3.9), write 

= <((ra 1 - ~A1)(I + ~8~B~)> (3.12) 

Now use Lemma 2.2 to show aA ~ -- ~A 1 ~ P~. Taking G(o, -6) = 1 + % ~ ,  
we find that the required result then follows from Theorem 3.2. The hypoth- 
eses of this theorem are satisfied because 

- ~ ( ~ ,  ~) = ~ ~ [(Y2 + Y2)(~2 + ~ )  + ( J2  - J 2 ) ( ~ 2  - ~2)  
A ~  + 

--~ (JA 2 -]- JA2)(~A 2 -1- O'A 2) 71- (JA 2 - -  JA2)(~A 2 - -  O-A2)] 

is an element of P by Lemma 2.2. 
(3.13) 

C o r o l l a r y  3.4 .  L e t  

H(,~) = - -A~+ (J2~al + JA2~A2) (3.14) 

with ga 1 /> 0 and JA 2 >1 0 for all A e ~ '  + so that - H e P1 + P2- Then 

~<~2>/aYB t = <~A1~2> - < o 2 > < ~ J >  > 0 ( 3 . i 5 )  

~(GAl>/69JB2 ~ <O'AlCrB2 > --  <GAI><O'B2> ~< 0 (3.16)  
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P r o o L  From Corollary 3.3 for a duplicated system, 

(@A 1) - (~AI)) / (J~ 1 - ] B  1) >1 0 (3.t7) 

((aA ~) -- (~A~))/(JB 2 -- YB 2) <~ 0 (3.18) 

provided JA ~ > ]A 1 /> 0 and JA 2 > JA 2 >1 0 for all A e de +. Now take the 
limits JA 1 -+ Ja ~ -- and Ja 2 -+ J f f  + for each A E ~ '+ .  Alternatively, from 
Theorem 3.2 and Lemma 2.2 

@ 2  - ~ 2 ) ( - ~ '  - ~ 1 ) ) / >  0 ,  @ 2  - e 2 ) ( ~ B  ~ - -~)) >/0 
(3.19) 

Setting JA = JA for all A e ~/+,  we find that these are precisely the desired 
inequalities (3.15) and (3.16). 

The results of Corollary 3.4 can be used to establish Gaussian in- 
equalities for plane rotators. Since the proof, involving induction, is special- 
ized, we merely state the results. The detailed proof can be found in the 
paper by Bricmont58) Given A ~ Me '+, we define p = {Bs: s = 1, 2,..., n} to 
be a partition of A if 

A = ~ Bs (3.20) 
S = 1  

and each Bs c J//+. A partition p is called a pair partition if either [B~I = 2 
for all s (when [A I is even) or IB~I = 1 for a single t and [B~[ = 2 for all 
s -r t (when [A[ is odd). 

Coro l l a ry  3.5. Given the Hamiltonian of Corollary 3.4, with the 
additional symmetry JA 1 = JA 2 for all A e J~+, then 

(B~) (3.21) 
p S = I  

where the sum extends over all pair partitions of A. 

So far we have derived componentwise inequalities, that is, we have 
taken the components of the spins to be the basic variables. We now derive 
different inequalities in terms of the variables cos(M-e) introduced in 
Section 2. The connection between these alternative parametrizations is 
given by (2.13). The fundamental result in terms of duplicate variables is the 
following. 

kemma 3.6. The inequality 

arc de [cos(Ms.,~) _+ cos(M~-ff)l >f 0 (3.22) 
8 = 1  
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(where f~= d~ stands for f~= .-. f 1--~A d~,) holds for any M 1 ,  M 2 . . . .  , M n c u///l 
and for any sequence of plus or minus signs. 

Proof. For any M a ~' ,  

cos(M I q~) + cos(M. 6) = 2 cos(M, qb) cos(M. U~) 

cos(M, q$) - cos(M.,~) = 2 sin(M. (1)) sin(M. ~)) (3.23) 
where 

~ = }(~ + ~), cI)~ = �89 - ~)  (3.24) 

Substituting (3.23) into (3.22), we obtain an expression of the form F(qo)F(~) 
for the integrand. Using periodicity and changing the integration variables, ~8) 
we can then write the integral as 

f [S '~ d 4 d~ F(*)F(Ub) = ~ dc~ F( cb >1 0 (3.25) 
~yg 

Theorem 3.7. Let ~ ( a ,  ~) be a Hamiltonian for a duplicated system 
defined on A. Then if - W  c Q, 

( f )  /> 0 (3.26) 
for all f e  Q. 

ProoL The result follows by applying Lemma 3.6 to the terms of the 
series obtained by expanding the Boltzmann factor exp[-YF(~, ~)] and f 

C o r o l l a r y  3 . 8 .  Let 

H(n) = - ~ JM cos(M.r (3.27) 
Me./// 

~q(~) = - ~ JM cos(M.~) (3.28) 
M e J /  

be Hamiltonians for two independent systems defined on A. If  Ju  /> ]Jul 
for all M a Jr', then 

(cos(m.  4~) cos(N, q~)) - (cos(m-~)  cos(N-~)) 

>/ I (cos(M.~))(cos(N.~))  - (cos(M-~))(cos(N.q~)) I (3.29) 

for any M, N e Jr The expectations can be taken in the appropriate indi- 
vidual system, that is (3.27) or (3.28), or in the doubled system 

~( ~ ,  ~) = ~(~) + ~qC~) (3.30) 

Proof. We write 

f = [cos(M. ~) cos(N, q~) - cos(M. ~) cos(N. ~)] 
+ [cos(M- q~) cos(N-~) - cos(M. ~) cos(N, q~)] 

= [cos(M.q~) u cos(M-~)][cos(N.q$) + cos(N.~)] (3.31) 
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The result now follows from Theorem 3.7 because 

- ~ ( o ,  ~) = �89 ~ {(J~ + ,/~)[cos(M.qS) + cos(M.~)] 
M~d4" 

+ (arm - JM)[cos(M.~) - cos(M.~)]} (3.32) 

so - Y t  a a n d f a b o v e  are both elements of  Q. 

Corol lary  3.9. Let 

H(o)  = - ~ J~  cos(M.qS) (3.33) 
Me,/// 

be a Hamiltonian with all the parameters J u  >1 O, i.e., -- H e Q. Then 

aJu (cos(M. ~)) = (cos(M-})  cos(N, qS)) 

- (cos(M.~))(cos(N.q~)) > 0 (3.34) 

for all M ,  N ~ .///. 

ProoL  The result follows in the same manner as Corollary 3.4. 

The set of  inequalities we derive next uses the idea of duplicate variables 
in an extended sense. Instead of considering independent duplicate systems, 
we allow an exchange between the systems. The particular situation we have 
in mind is the case where the duplicate systems are two halves of  a single 
initial system, symmetric under reflection. 

Let f2 be a set of  sites in d-dimensional Euclidean space, invariant 
under some reflection 6) with respect to a fixed (d - 1)-dimensional hyper- 
plane. Given i c ~,  let @i denote the site in f2 obtained from i by this reflec- 
tion. The set f2 can then be decomposed as 

where 

= A w @A (3.35) 

OA = {Oi: i e  A} (3.36) 

We assume that this decomposition is disjoint and that no sites are left 
invariant by the reflection. Also we set 

ao~ = ~ ,  J~oj = J~j, ho~ = h~; i, j E A (3.37) 

Thoorom 3.10. Let 

~ ( , )  = _ ~ ( j ~ l ~ r  1 + j~.~2~;2) _ ~ (h1~1 + h2~2) (3.38) 
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be the Hamiltonian for a system on the reflection-invariant set [2. If, in the 
above notation, the interactions satisfy 

( i )  J ,}  = J~ioj (3.39) 
(ii) J~/> IJ,~l, Ji~, ./> IJ~l (3.40) 
(iii) h, ~ >/ 1~?1, ~? t> Ih,2l (3.41) 

then 

for a n y f e  P. 

<f> >/ 0 (3.42) 

Proof. By Theorem 3.2 we need only show that - ~  e P. But now the 
contribution from the first components, viz. 

t J e  i ~ A  

= } ,,~A [(J3 + J3)~m + (J5 - J~)/33,] 

+ ~ y .  [(h? +/77)~, + (h? - &~)~,] 

(3.43) 

(3.44) 

is an element of Pl. Similarly, the contribution from the second components 
is an element of P2- Hence - ~  s P. 

ties 
Coro l la ry  3.11. Let ~(f(a) be as in Theorem 3.10. Then the inequali- 

<~AI~BI> -- <~AI~BI> /> 0 

<~AI~,~> -- <02~,~> ~ 0 

hold for all A, B e J//+. 

Proof. The required inequalities are, respectively, 

<(~a~ - ~ 2 ) ( ~ #  - ~,~)> >/0 

<(~2 _ ~ 1 ) ( ~  ~ _ ~ ) >  >/ 0 

These follow from Lemma 2.2 and Theorem 3.10. 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

4. I N E Q U A L I T I E S  FOR H I G H E R - D I M E N S I O N A L  S P I N S  

The known inequalities for higher-dimensional spins are derived by 
decomposing the spins into coupled two-dimensional spins. This approach 
is unfortunately limited to spin dimensionalities n ~< 4. Let us first consider 
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classical Heisenberg spins, that is, three-dimensional spins. In spherical 
polars these have the familiar parametrization 

St = (sin 0t cos ~t, sin 0t sin ~t, cos 0~) (4.1) 

g~ = (sin 0t cos ~i ; sin 0t sin ~ ,  cos 0~) (4.2) 

where 0 ~< 0t, 0~ < 7r and 0 ~< q~t, ~ < 27r for i e  A. Thus each spin St is 
represented by two plane rotators associated with the angles 0~ and q~. In 
the sequel we will use the alternative parametrization 

St = (@ cos ~t, @ sin ~t, ~2) (4.3) 

g~ = ( ~  cos ~i, ~ sin ~t, ~2) (4.4) 

with 

at = (sin 0t, cos 00, ~t = (sin 0t, cos Jr) (4.5) 

and the auxiliary variables at, fit, 7't, and 3 t defined as in (2.12). 

T h e o r e m  4.1. Let W(S, 3) be a Hamiltonian for a doubled Heisen- 
berg system and suppose that - W  e PQ when the spins are parametrized 
according to (4.3) and (4.4). Then 

( f ) a  t> 0 (4.6) 

for a n y f e  PQ. 

Proof. Since 

fs3 dSt = f ;  do~ fo2'~d~ sin O~ 

the usual expansion techniques reduce our task to proving 

fo~dO dO f i2~ d4 d~ aA~,daAfl~rc3D 

• I ~  [cos(M~. ~) _+ cos(M,. ~)] >/ 0 
S = l  

This is just a combination of Lemmas 3.6 and 3.1 with 

d~(~, ~ = c(a, ~ 1--[ d~, d~, 
i e A  

and 

{;̂  1~A1 for @, a-~ 1 /> 0 for all i e A 
G(n, ~ = otherwise 

(4.7) 

(4.8) 

(4.9) 
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Corollary 4.2.  Let  H(S)  be a Hamil tonian for a Heisenberg system 
and suppose that  - H ~ P~Q + P2 when the spins are parametrized according 
to (4.3). Then 

<flgl>a - <f~>a<gl>a ~> 0 (4.10) 

(f2g2>a - (f2>a(g2)a > 0 (4.11) 

(f~g2)a -- (A>a(g2>a ~< 0 (4.12) 

for  any f l ,  g~ ~ P I Q  and any f2,  g2 ~ P2. 

ProoL  Duplicate the system and set 

~,~ S) = H(S)  + _~(S) (4.13) 

Now notice that, by Lemma 2.2, %~ cos(M.r  __+ 8A * c o s ( M . r  P~Q and 
~-A 2 + CrA2C F2 SO that  -dY~c pQ.  Thus the required results follow from 
Theorem 4.1 with the appropriate  choice o f f e  PQ.  For  example, (4.12) is 
obtained by choosing 

f (S ,  S) = [f~(S) - f~(g)][g2(g) - g2(S)] (4.14) 

C o r o l l a r y  4.3.  Let 

H(S)  = - ~ (JA~SA ~ + JA2SA 2 + JAaSA a) (4.15) 
AeJ{  

be a Heisenberg Hamil tonian with JA 3 i> 0, [JA2I ~< Ja ~ for all A E ~ ' +  and 
Ja 2 = 0 for  IA] odd. Then  

O(Sa~>a/OJs ~ = <Sa"Sz")a - (SA~>a(S.")a > 0; a = l ,  3 
(4.16) 

(4.17) 

a, = (sin 0k, cos 0,), a, = (sin gk, cos 0k) 

and 0 ~< 0k, 0k < 7r/2 and 0 ~< Ck 1, Ck 2, eft, r < 2~r; for all i e A .  

(4.20) 

where 

for any A, B e de' +. 

Proof .  By Lemma 2.3, - H E P 1 Q  + P2. Thus the results are special 
cases of  Corollary 4.2. 

Inequalities similar to the above can also be derived for four-dimen- 
sional spins. These spins are parametrized by 

Si = (@ cos r 1, cq 1 sin eft, ~i 2 cos r cq2 sin r (4.18) 

gk = (ak 1 cos ~1, ak~ sin Ck 1, ak 2 cos Ck 2, a~ 2 sin r 2) (4.19) 
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Theorem 4.4. Let Jr(S, S) be a Hamiltonian for a doubled system 
with four-dimensional spins and suppose that - J {  c PQ,Q2 when the spins 
are parametrized according to (4.18) and (4.19). Then 

(f>~ > 0 (4.21) 

for a n y f e  P Q z Q -  

ProoL Notice that 

,5' ~12 ~, 2~ 1 /" 2z 
d S i  = ~o f dO, Jo dr Jo dr sin 0, cos 0, (4.22) 

The proof now proceeds as for Theorem 4.1, if we take 

= faAlcrA2JA15A z for a l, ~i2, a-il, ~2 /> 0 for all i c A 
G(a, ~ ~0, otherwise 

(4.23) 

Corollary 4.5. Let H(S) be a Hamiltonian for a system with four- 
dimensional spins and suppose that - H e P s Q 1  + P2Q2 when the spins are 
parametrized according to (4.18). Then 

( A g , ) 4  - (f~)4(g~)4 >>- 0 (4.24) 

(Ag~)~  - ( f2 )4(g2)~  >1 0 (4.25) 
< A g 2 > 4  - -  < A ) 4 < g 2 > 4  ~< 0 (4.26) 

for anyf~,  g~ ~ PIQz and any f2, g2 ~ P2Q> 

Proof. The results follow from Theorem 4.4 and the arguments of 
Corollary 4.2. 

Coro l la ry  4.6. Let 

H(S) = - ~ (JA~SA ~ + JA2SA 2 ~ JA3SA 3 ~ JA4SA 4) (4.27) 
A ~71/J{ + 

be a Hamiltonian for a system with four-dimensional spins such that 
[JA2[ ~ JA 1, [JA4[ ~.< JA 3 for all A e d /+  and Jf f  = JA 4 = 0 for ]A I odd. Then 

a ( & ~ ) ~ / ~ J .  ~ -  ( s # s . ~ ) ~  - ( s / > d & ~ ) ~  > o; a = l , 3  
(4.28) 

e ( S A ~ ) ~ / e J B  1 - -  ( & 3 S . b ~  - -  4XA3>dSBI>~ < 0 
(4.29) 

for any A, B ~ d /+ .  

Proof. By Lemma 2.3, - ~,~ c P~ Q1 + P2 Q~. Thus the results are special 
cases of Corollary 4.5. 
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Gaussian inequalities of the form (3.21) can also be obtained, for the 
spin components labeled 1 and 3, for spin dimensionalities n = 3 and n = 4. 
Given JA: = j 3  for all A G Jr these inequalities follow by an inductive 
proof using the results of Corollaries 4.3 and 4.6, respectively. Again the 
reader is referred to Bricmont (8) for details. 

Although the correlation inequalities of this section are expected to 
hold for n > 4, they have not been extended to these systems. However, 
there are certain comparison inequalities which relate correlations for high- 
spin-dimensionality systems to corresponding correlations for low-spin- 
dimensionality systems. We now give a derivation of these inequalities based 
on mixed duplicate variables. 

l e m m a  4.7. Let/z~ = + l, i G A, be a set of Ising spins. Then 

~ (  dS I-~ (/x~ + S~ 1) ~ (t~,~k -+ Sj'Sk) /> 0 (4.30) 
: u ) J ~  S} i (i,k) 

for all products over sites i c A and pairs (j, k) ~ A • A and for any sequence 
of plus or minus signs. 

Proof. The integrals in (4.30) are invariant under the replacement 
S~-+ t~S~ because the absolute value of the Jacobians is unity for these 
transformations. Thus the result is obtained by noting that: 1 + S~ ~ /> 0; 
1 _+ Ss-S~ /> O; and ~(~) tzA /> 0 for all A ~ ' + .  

T h e o r e m  4.8. Let 

H(S) = - ~ J, j S , - S j -  ~ h,S, ~ (4.31) 
i ,]eA ieA 

be an n-vector spin Hamiltonian with J~j >/0 and h~ >/O, and for n = 1 
write 

Y(tz) = -  ~ J~j./z,/~j- ~h~tz, (4.32) 
i,]GA iGh 

Then for n >/ 2, 
(SA:)~ <~ (tZA)I (4.33) 

(S~.Sj)~ ~< (tz,/xj): (4.34) 

for any A c ~ ' +  and any pair (i,j) of sites. 

ProoL Introduce a mixed duplicate Hamiltonian 

~f(tL, S) = H(t0 + H(S)  (4.35) 

Then in the doubled system, (4.33) and (4.34) are consequences of the more 
general inequality 

~ ( t z  A - SA:)~-~ (tL#Ls -- S , .S j )~I .~  >~ 0 (4.36) 
(~,J) 

which follows by expanding the Boltzmann factor and using Lemma 4.7. 
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T h e o r e m  4.9. Let 
n 

H(S) = - ~ /-,S' J.~.S.=S.=, , , - ~ h,S, z (4.37) 
i,jeA g =  i i e A  

with J~ >i IJ~l, J~ >i 0 for all ~ # 2 and h~ I> 0. Then for n i> 3, 

(Sa l ) ,  ~< (Sal)= (4.38) 

ProoL Introduce a mixed duplicate Hamiltonian 

2/g(-J, S) = H(6) + H(S) (4.39) 

where parametrically 

~ = (cos ~ ,  sin ~),  Si = (sin Oi cos ~ ,  sin O~ sin r cos OiU~) 
(4.40) 

with 0 ~< 0~ < 7r/2; 0 ~< ff~, ~, < 2~r; and Us an (n - 2)-dimensional unit 
vector spin. In the doubled system we want to prove that 

(~A 1 - SA1)2,~ >1 0 (4.41) 

But now 

851 + S~ 1 = cos ~ + sin 0i cos ~ 

= �89 + sin 00(cos ~, + cos $i) + (1 - sin 0,)(cos 6i T- cos $~)] 

(4.42) 

Clearly, by Lemmas 2.2 and 2.3, 6A ~ + Sa t and - Jt~ S) can be expanded 
as multinomials with positive coefficients in the variables: (1 + sin 0,), 
[cos(M.~) + cos(M. ~b)], and cos 0~ cos 0jU,.Uj. Thus, noting that 

f~l~2~ F2z F2~ f~ .dS ' f~  d~' = .0 IdO, sinO,(cosO,)~-SJo dq~,Jo d~ ' f~ ,_2dU'  

(4.43) 

we obtain the required result by expanding e x p [ - ~ ,  S)] and using Lemma 
3.6 and Theorem 2.1, the integrals over the 0 variables being trivially non- 
negative. 

5. D I S C U S S I O N  

In retrospect, certain marked trends are evident in the inequalities as 
the spin dimensionality varies. Most importantly, as n increases, the known 
results become weaker. Perhaps this should not be surprising. However, it 
does leave a number of questions still to be answered. To give the reader a 
clear picture of the situation, we conclude by discussing some of the remain- 
ing open problems in the field of correlation inequalities. For definiteness, 
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we focus attention on the pair-interaction Hamiltonian (2.5) in the sequel 
without further comment. 

Perhaps the most outstanding problem is to decide whether the following 
inequality holds: 

8(S~ l ) , /OJs ,  = (S~I(Sj.S~)), - (S~) , (Sj .Sz) ,  >/0; n /> 3 (5.1) 

The monotonicity property (5.1) would have many important consequences. 
For example, the results of Frohlich et  al.  ~19~ on the existence of phase 
transitions for these systems could be extended beyond nearest-neighbor 
ferromagnetic interactions. 

Another inequality whose validity has not been ascertained is the 
following: 

<SA~SB~>. -- <SA~>~<SBI>. >- 0; n >/ 5 (5.2) 

This is an obvious extension of the correlation inequalities (3.15), (4.16), 
and (4.28) and would be expected to have similar applications. 

On the basis of the comparison inequalities (4.33) and (4.38) it is reason- 
able to make the following conjecture: 

<SAX>n >>, (Sal>n+~; n /> 3 (5.3) 

Intuitively, one indeed expects the correlations between spins to decrease as 
the phase space available to the spins becomes larger. 

Our final unsolved problem is the following higher order inequality: 

a2<S,l>./ah~ ahk = < S , ~ S ? S k %  -- < S , % < S ? S ~ > .  - < S ? > . < S , ~ S ~ %  

- ( S k l ) , ( S , ~ S y X ) ,  + 2 ( S , I ) , ( S j X ) , ( S ~ ) ,  <<. 0; 
n >t 2 (5.4) 

For n = 1 this is the Griffiths-Hurst-Sherman inequality3 2~ In a uniform 
magnetic field h~ = h, it implies the concavity of the magnetization as a 
function of the field h. 

The above inequalities are potentially very useful and because no counter- 
examples exist we can optimistically hope that they are generally valid. On 
the other hand, it would also be of interest to know if they are incorrect, 
as this would perhaps indicate that the way we think about these models 
needs to be revised. 
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